根据带电粒子在大型强子对撞机 (LHC) 等对撞机实验的探测器中留下的命中集合重建带电粒子的轨迹是一项具有挑战性的组合问题,并且计算量巨大。升级后的高亮度 LHC 的输出亮度增加了 10 倍,因此探测器环境将非常密集。传统技术重建粒子径迹所需的时间与径迹密度呈二次方以上关系。准确高效地将留在跟踪探测器中的命中集合分配给正确的粒子将是一个计算瓶颈,并促使人们研究可能的替代方法。本文提出了一种量子增强机器学习算法,该算法使用带有量子估计核的支持向量机 (SVM) 将一组三个命中(三元组)分类为属于或不属于同一条粒子径迹。然后将该算法的性能与完全经典的 SVM 进行比较。与经典算法相比,量子算法在探测器最内层方面的准确度有所提高,这对于轨迹重建的初始播种步骤至关重要。
主要关键词